
	
	 	

STORYCREATOR	
Complete	Documentation	

	

Team	16-	T.I.P.	

Lingxiao	Gao	|	Jie	He	|	
	Zijing	Liu	|	Zheman	Shi	|		
Thanakorn	Suppakarnpanich	|	Yubo	Wang	
	



	 2	

T.I.P	TeamInPower	

Team	Member: 	

Zijing	Liu	zijingli@usc.edu 	

Lingxiao	Gao	lingxiag@usc.edu 	

Zheman	Shi	zhemansh@usc.edu 	

Thanakorn	Suppakarnpanich	suppakar@usc.edu		

Jie	He	hejie@usc.edu 	

Yubo	Wang	yubowang@usc.edu		

	

	

	

	

	

	

	

	

	

	

	

	



	 3	

High-Level	Requirements	

A	text	game	engine	(software/android	app)	that	helps	users	to	easily	
create	their	own	text	games.	

User	does	not	need	any	coding	experience	to	use	our	text	game	engine.	
We	provide	graphical	UI,	which	should	be	user-friendly	and	easy-use,	to	
help	user	fully	utilize	provided	functionality.	 	

User	could	package	up	his	own	text	game	after	he	made	it.	He	could	
choose	share	the	game	with	his	friend,	with	the	public,	or	just	upload	to	
the	remote	server.	If	he	shares	his	game	with	his	friends,	his	friends	
could	download	his	game	from	the	server.		

Users	could	backend	download	games.	They	could	do	some	other	stuff	
when	they	download	games.	(multi-threads;	there	will	be	more	multi-
threads	when	optimizing	codes).	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Technical	Specifications	



	 4	

Client	
	
Game	GUI	
The	game	engine	will	prove	a	default	game	GUI	for	user	to	visualize	their	
text	game.	However,	users	could	customize	their	game	GUI	by	manually	
set	 up	 some	 GUI	 variables,	 which	 includes	 background	 image,	 font,	
textures.	A	user	could	also	indicate	for	each	scene	how	he	or	she	wants	
to	display	all	texts	and	game	contents	at	a	given	scene	state.	
	
Login	Window	GUI	
After	user	opens	our	software,	the	Login	Window	GUI	will	display.	The	
Login	Window	GUI	has	dimension	960	*	640.	There	are	three	sections	in	
the	Login	Window	GUI	–	the	title,	the	 logo	animation	and	the	buttons	
group.	The	size	of	these	sections	should	be	proportional	to	the	provided	
screenshot	 below.	 There	 is	 status	 label	 at	 the	 left	 bottom	 corner	 to	
indicate	the	connection	status	with	the	server.		
	

	
	



	 5	

All	the	sections	will	be	loaded	as	soon	as	the	Login	Window	GUI	shows	
up,	but	 the	username	and	password	 fields	will	be	blank	until	 the	user	
enter	their	username	and	password.	
	
Section	functionality	
	
When	every	 section	 is	 sated	up,	 the	user	 is	 able	 to	 login	with	 correct	
username	and	password	combination.	
	 	

a).	Title	and	logo	functionality	
It	is	a	JLabel	that	contains	an	image	that	includes	both	the	title	and	our	
logo.	
	

b).	User	and	password	functionality	
These	 two	 are	 made	 with	 JTextField	 and	 user	 must	 enter	 correct	
username	 and	 password	 to	 login.	 If	 user	 enter	wrong	 combination,	 a	
massage	will	show	up.	
	

c).	Login	button	functionality	
This	one	is	made	with	JButton.	After	users	enter	username	and	password,	
they	can	press	 this	button.	 If	 combination	 is	 true,	 they	will	go	 to	next	
window.	If	not,	a	window	will	pop	up	that	shows	some	massages.	
	

d).	Sign	up	button	functionality	
This	one	is	made	with	JButton.	After	users	press	this	button,	a	window	
will	pop	up	to	let	users	create	username	and	password.	If	username	is	
already	in	database,	it	will	ask	again	until	users	enter	a	unique	username.	
	

e).	Login	as	Guest	button	functionality	
This	 one	 is	made	with	 JButton.	 It	 let	 user	 login	without	 entering	 any	
information.	After	press,	users	will	go	directly	to	the	next	window.	
	

f).	Forgot	username	button	functionality	



	 6	

This	one	is	made	with	JButton.	It	will	ask	users	to	enter	the	email	address	
that	they	used	for	registering.	Then	they	will	receive	emails	that	contains	
their	username.	
	

g).	Forget	password	button	functionality	
This	one	is	made	with	JButton.	It	will	ask	users	to	enter	the	email	address	
that	they	used	for	registering.	Then	they	will	receive	emails	that	contains	
their	password.	
	

	
h).	JMenubar	functionality	

There	is	a	menu	at	the	top	left	corner	which	has	a	menu	item	“connect”.	
When	pressed,	it	will	pop	a	window	in	which	users	can	set	hostname	and	
password.	 Here	 requires	 an	 admin	 password	 in	 order	 to	 make	 valid	
change	 of	 hostname	 and	 password.	 (This	 part	 has	 been	 removed	
because	we	have	put	our	server	and	database	to	the	Amazon	Server	and	
everything	is	set	up	automatically.)	
	
	
	



	 7	

	
Create	File	Window	GUI	
	
After	the	user	logs	in,	the	GUI	with	options	to	create	a	file	will	display.	
There	are	three	sections	in	this	GUI	–	the	three	buttons	on	the	left,	the	
main	 section	on	 the	middle	of	 the	 screen	 that	by	default	displays	 the	
sample	templates	provided,	and	the	create	button	in	the	bottom	right	
corner.	

	
	
Section	functionality	
	

		a).	User	Button	functionality	
		The	first	button	on	the	left,	“User”,	is	a	display	of	the	user’s	avatar,	

which	allows	the	user	to	click	on	it	and	choose	to	log	out	and	return	to	
the	previous	Login	Window	GUI,	and	check	the	number	of	existing	game	
projects.	
	 			
	 		b).	New	Button	functionality	



	 8	

		The	“New”	button	is	selected	by	default,	and	shows	all	the	templates	
the	user	can	choose	from	to	start	creating	his	or	her	own	game.	
	
	 		c).	Open	Button	functionality	

		The	“Open”	button	allows	the	user	to	open	a	 local	 file	and	 load	a	
game	he	or	she	was	previously	working	on.	
	

		d).	Template	Panel	functionality	
		The	 template	 section	 is	 made	 from	 JPanel.	 Inside	 the	 JPanel,	 all	

predefined	template	icons	are	made	from	JLabel	(may	be	changed	in	the	
future).	 The	 predefined	 templates	 will	 be	 shown	 with	 a	 simple	
description	of	a	design	style.	The	user	can	also	design	original	templates	
that	will	be	shown	as	well.	The	predefined	design	styles	we	provide	at	
present	are	pixel,	sci-fi,	medieval	and	fairytale.	

	
		e).	Create	Button	functionality	
		The	 “Create”	 button	 lets	 the	 user	 open	 his	 or	 her	 file,	 and	 the	

software	will	automatically	jump	to	the	Main	Window	GUI.	
	

	
Main	Window	GUI	
	
After	user	created	file	or	opened	the	existed	file,	the	Main	Window	GUI	
should	be	displayed.	The	Main	Window	GUI	should	open	to	the	full	size	
of	the	screen.	There	are	main	five	sections	in	the	Main	Window	GUI	–	the	
menu,	the	run/stop	button,	the	hierarchy	Tabbed	Pane,	the	WorkArea	
Tabbed	 Pane	 and	Outline	 panel.	 The	 size	 of	 these	 sections	 should	 be	
proportional	to	the	provided	screenshot	below.	
	
All	the	sections	will	be	loaded	as	soon	as	the	Main	Window	GUI	shows	
up,	but	the	WorkArea	will	be	blank	until	the	file	is	received	from	Create	
File	Window.	
	



	 9	

	
	
	
Section	functionality	
	 	
When	every	section	is	sated	up,	user	is	able	to	create	or	edit	his	or	her	
own	Story	by	using	the	functionality	our	software	provided.		
	 	

a).	Menu	functionality	
	 	 For	the	menu	section,	it	is	made	from	JMenu,	which	contain	
five	 JMenuBar	 in	 it	 –	 File,	Asset,	Object,	Window,	Help.	 For	 the	 “File”	
MenuItem,	 it	 contains	options	 like	 create	new,	open,	 close,	 and	 save.		
GUI	setting.		The	“Project”	MenuItem	contains	game	setting.	The	“Object”	
MenuItem	provides	user	with	all	kinds	of	elements	he	or	she	needs	for	
creating	the	story.	The	“Help”	MenuItem	should	contain	a	tutorial	of	the	
software.	 The	 tutorial	 should	 be	 a	 documentation	 contain	 text	 and	
images.	
	
	 	 b).	Run/Stop	Button	functionality	
	 	 For	the	run/stop	button,	it	is	designed	to	let	user	test	or	run	
his	or	her	story	during	or	finishing	manufacturing.	
	 	



	 10	

c).	Hierarchy	Tabbed	Pane	functionality	
	 For	the	hierarchy	tabbed	pane,	it	is	made	from	JTabbedPane	

which	contains	Hierarchy.	The	Hierarchy	will	list	all	the	scenes	user	made	
and	all	 the	 components	 in	 the	 scene.	User	 could	add	a	new	 scene	by	
clicking	“Add	Scene”	button.	When	the	user	right	clicks	an	element	in	the	
hierarchy,	he	or	she	could	choose	to	delete	the	scene	or	add	new	state.		

	
	d).	Work	Area	Tabbed	Pane	functionality	
	 	The	 work	 area	 is	 the	 main	 section	 for	 user	 operation.	 It	

contains	two	parts	–	Preview	part	and	Edit	part.	For	the	Edit	part,	it	is	the	
area	 for	 user	 to	 do	 any	 modifications	 on	 the	 scenes	 such	 as	
changing/adding/deleting	 objects	 and	 properties	 within	 the	 current	
selected	scene.	When	user	finishing	editing,	he	or	she	can	view	the	result	
of	 his	 or	 her	modification	 in	 the	 preview	 section.	 (Note:	 the	 preview	
section	will	 automatically	update	 the	operations	user	does	 in	 the	Edit	
section.)	For	the	preview	part,	user	could	see	the	preview	of	the	state	
and	change	the	locations	of	game	contents	by	dragging	the	elements.	

	
e)	Setting	Panel	functionality	
The	setting	panel	is	made	to	change	the	game	contents	locations	

and	sizes	in	the	state	preview	area.	
	
GUI	Save	and	Exit	
After	creating	the	story,	user	could	save	their	story	by	clicking	the	“File”	
à	“Save”.	User	could	choose	to	save	to	the	local	folder,	the	server.	After	
saving	the	story,	user	can	choose	either	close	the	software	or	continue	
working.	
	
Game	logics	
The	text	game	made	through	the	game	engine	 is	based	on	a	series	of	
scenes	 and	 game	 contents,	 and	 eventually	 displayed	 by	 game	 GUI	
generated	by	the	game	engine	with	customized	user	settings.	All	game	



	 11	

data	is	stored	in	a	game	project	objet	and	the	entire	game	play	process	
is	controlled	by	a	game	play	manager.	
	

a) Scene	
This	is	the	main	component	of	a	text	game.	It	represents	what	will	be	

shown	on	the	screen	at	one	time.	Scenes	contain	description	texts,	game	
contents,	and	next-step-choices.	Description	texts	are	what	users	want	
their	players	to	see	at	the	current	scene	time.	Game	contents	are	some	
function	derived	 components	 in	 the	game	 (will	 discussed	 later).	Next-
step-choices	are	actions	that	player	could	choose	between	one	of	them	
when	they	exit	the	current	scene.	A	scene	also	has	its	own	state	property,	
which	is	used	to	determine	how	it	will	be	shown	on	screen	at	one	time.	
Specifically,	 a	 scene	 can	 show	one	part	 of	 its	 description	 texts	 at	 one	
state,	and	show	another	part	of	description	text	at	another	state.	So	do	
the	game	contents	and	next-step-choices.		

	
b) Game	Content	
This	 is	 an	 information	 derived	 game	 component.	 It	 could	 be	

customized	by	user.	It	has	a	name,	a	description	(this	could	be	image	as	
well).	When	a	user	customizes	a	game	content,	he	or	she	should	provide	
a	name	and	descriptions.	There	are	also	some	pre-define	game	content	
that	user	could	use.	

1. Player	Game	Content:	This	represents	the	player	object	in	the	
game.	It	has	a	name,	an	inventory	to	contains	items.	

2. Item:	Every	customized	game	content	could	be	an	item.	
	

c) Game	Project	Object	
This	stores	all	the	data	of	a	game,	which	includes	all	scenes,	game	

contents,	GUI	settings.	
	
	
	
	



	 12	

Server	
	
Server	has	 its	own	database	to	store	all	user	 information.	 It	should	be	
able	 to	 connect	 with	 multiply	 clients	 at	 the	 same	 time.	 It	 should	 be	
working	fine	without	any	human	involvement.		
	
All	server	GUI	is	removed	for	the	latest	version	because	we	put	our	server	
and	database	to	Amazon	Server	and	ever	thing	is	set	up	automatically.	
	

a) Port	GUI	
When	 run	 the	 server	 client,	 port	 window	 will	 be	 the	 first	 GUI.	 It	

requires	a	port	number	to	listen.	If	an	invalid	port	number	is	entered,	the	
text	area	will	be	cleaned	and	port	number	will	be	required	again.	
	

b) Server	GUI	
After	a	port	is	successfully	set,	there	will	be	a	server	GUI.	It	is	just	a	

window	with	a	logo	and	a	terminate	button,	which	used	to	terminate	the	
server	 service.	 All	 communications	 between	 server	 and	 clients	 are	
automatically	running	without	the	need	of	human	involvement.	
	
Server	Database:	
	
Server	has	a	main	database	containing	users	and	their	data.	We	do	this	
because	we	want	the	users	to	only	be	able	to	load	their	data	when	they	
are	connected	to	the	server	and	data	will	be	stored	more	securely.	For	
server	database,	 there	are	 two	main	data	object:	MySQLDriver	object	
and	User	object.	All	data	will	be	stored	in	MySQL	database.	
	

a) User	Object	
User	 object	 will	 contain	 all	 user	 data	 such	 as	 username,	 password	

(encrypted),	and	Arraylist	of	current	user’s	game	projects.		
	 	
*Game	Project	Object	



	 13	

This	 is	 the	 object	 that	 stores	 all	 game	 data	 of	 a	 game	 project.	 It	
contains	game	project	name,	game	project	GUI	settings,	scenes,	game	
centents.	
	

b) MySQLDriver		
	 MySQLDriver	is	a	class	for	managing	database.	It	connects	the	Java	
program	to	MySQL	database.	There	are	two	most	important	functions	in	
this	class.	The	function	saveToDatabase()	takes	 in	the	User	Object	and	
parse	all	data	of	user	into	table	in	MySQL.	Secondly,	LogIn()	reconstructs	
a	user	object	by	retrieving	data	from	MySQL	tables	and	returns	to	the	
logged	in	user.	This	class	supports	get	and	add	data	function	to	the	table.		
	
	
How	Server	database	works	with	Client	
	
Upon	launching	the	software,	you	can	either	log	in,	sign	up,	or	change	
password.		
	

a) Option	1:	Log	in	
When	the	user	types	in	username	and	password,	MySQLDriver	would	

look	into	user	table	in	database	and	checks	if	the	user	exists.	If	it	does	
not	exist,	then	it	will	return	null.	If	the	username	and	password	exists,	it	
will	reconstruct	a	user	object	that	integrating	all	user	data	from	the	table	
into	a	user	object,	which	is	returned	to	the	current	user.		
	

b) Option	2:	Sign	up	
This	will	create	a	new	user	object.	It	needs	to	check	if	the	username	

already	exist	in	database.	If	not,	create	a	new	user	object	with	password,	
store	it	in	database,	and	return	the	newly	created	user	object.	So	if	return	
is	null,	we	know	that	username	and	password	already	exist	so	we	can’t	
create	new	user	with	that	username.		
	

c) Option	3:	Change	password	



	 14	

If	user	wants	 to	 change	 the	password,	he	or	 she	 could	 type	 in	 the	
username	and	old	password.	Then	he	or	she	could	type	in	the	new	one	
to	change	the	password.	If	input	is	correct,	it	will	change	the	password	
and	store	new	password	in	database.	

	
After	a	user	enters	the	software,	he	or	she	has	the	option	to	create	new	
project	or	load	up	existing	project.	
	

a) Option	1:	Creating	new	project	
This	will	create	a	new	game	project	object.	If	the	user	chooses	to	save	

it	 in	 the	 remote	 server,	 this	 game	 project	 will	 be	 added	 to	 the	
ArrayList<GameProject>	 of	 the	 user	 and	 will	 be	 stored	 in	 the	 server	
database	in	MySQL	tables.	

	
b) Option	2:	Open	existing	project	
The	 user	 object	 that	 is	 returned	 when	 LogIn()	 is	 called	 already	

reconstructs	 a	 user	 object	 that	 has	 all	 the	 existing	 game	 project.	
Therefore,	when	the	user	opens	an	existing	project,	he	can	just	find	from	
the	returned	user	object.	

	
When	user	finishes	creating	their	game,	they	could	choose	store	locally	
or	 remotely.	 If	 they	 choose	 save	 remotely,	 the	 current	 game	 project	
object	will	be	sent	to	the	server.	The	server	will	add	that	game	project	
object	to	the	user	object	and	update	the	MySQL	database.		
	
Server	&	Client	Communication	Protocol		
	
There	should	be	server	communication	protocols	for	server	and	clients	
to	follow	in	order	to	make	efficient	and	safe	communication.	It	should	
specify	 how	 server	 and	 client	 should	 start	 their	 communication,	 send	
their	request,	and	receives	data.		
	
	



	 15	

Detailed	Design	
Hardware	Requirements		

Windows:		

Windows	8	(Desktop)		

Windows	7 	

Windows	Vista	SP2		

RAM:	Recommended	512MB		

Disk	Space:	Recommended	1GB		

Processor:	Minimum	Pentium	2	266MHz	processor		

Mac	OS	X:		

Intel-based	Mac	running	Mac	OS	X	10.8.3+,	10.9+		

Linux:		

Oracle	Linux	5.5+ 	

Oracle	Linux	6.x	(32-bit),	6.x	(64-bit) 	

Oracle	Linux	7.x	(64-bit) 	

Red	Hat	Enterprise	Linux	5.5+	(32-bit),	6.x	(64-bit)		

Ubuntu	Linux	12.04	LTS,	13.x		

Software	Requirements	

Java	8 	

Eclipse	IDE	for	Java	EE	Developers	(Luna/Mars)		

	



	 16	

Server	
	

Constants	
+int:	lowPort	
+int:	highPort	
+int:	defaultPort	
+String:	defaultHostname	
+String:	portDescriptionString	
+String:	portLabelString	
+String:	submitPortString	
+String:	portGUITitleString	
+int:	portGUIwidth	
+int:	portGUIheight	
+String:	portErrorString	
+String:	portAlreadyInUseString	
+String:	initialtoryStoryCreatorTextAreaString	
+String:	StoryCreatorGUITitleString	
+int:	StoryCreatorGUIwidth	
+int:	StoryCreatorGUIheight	
+String:	startClientConnectedString	
+String:	endClientConnectedString	
+String:	clientDisconnected	
+String:	selectStoryCreatorButtonString	
+String:	defaultResourcesDirectory	
+String:	unrecognizedLine	
+String:	StoryCreatorFileDelimeter	
+String:	StoryCreatorLoadedMessage	
	
	

InfoServerGUI:	JFrame	
+long:	serialVersionUID	
-JTextArea:	textArea	



	 17	

-JScrollPane:	textAreaScrollPane	
-ServerListener:		
-InitializeVariable():	void	
-createGUI():	void	
-addActionAdapter():	void	
+setServerListener(ServerListener):	void	
+CloseOperation():	void	
+addMessage(String):	void	
	
	

Server	
-	UserDatabase	mUserDatabase	
+	Server(int)	
+	main(String	[]	args)	
	
	

MySQLDriver	
-Connection:	con;	
-String:	selectUserName	
-String:	addUserName	
+String:	updateUser	
-String:	updatePlayer	
-String:	selectPlayer	
-String:	selectPlayerFromGPID	
-String:	addPlayer	
-String:	updateGameContent	
-String:	selectGameContent	
-String:	selectGameContentFromSceneBelongTo	
-String:	selectGameContentFromPlayerBelongTo	
-String:	addGameContent	
-String:	updateGameProject	
-String	selectGameProject	



	 18	

-String	selectGameProjectFromName	
-String	addGameProject	
-String	updateScene	
-String	selectScene	
-String	selectSceneFromGPID		
-String	addScene	
-String	updateSceneStatePair	
-String	selectSceneStatePair	
-String	selectSceneStatePairFromSceneBelongTo	
-String	addSceneStatePair	
	
-String	updateSceneState	
-String	selectSceneState	
-String	selectSceneStateFromSceneBelongTo	
-String	addSceneState	
-String	updateGameSetting	
-String	selectGameSetting	
-String	addGameSetting	
-String	userpasswordtemp	
+setLogInString(String):	void	
+MySQLDriver()	
+connect():	void	
+stop():	void	
+logIn(String,	String):	User	
+createNewUser(String,	String):	User	
+	doesUserExist(String):	boolean	
+	doesUserPasswordExist(String,	String):	boolean	
+	doesPlayerExist(int):	boolean	
+	doesGameContentExist(int):	boolean	
+	doesGameProjectExist(int):	boolean	
+	doesSceneExist(int):	boolean	
+	doesSceneStatePairExist(int):	boolean	



	 19	

+	doesSceneStateExist(int):	boolean	
+	doesGameSettingExist(int):	boolean	
+	addUserName(String,	String):	void	
+	changePassword(String,	String,	String):	void	
+	updateUser(String,	String):	void	
+	saveToDatabase(User):	void	
+	getUserObject(String,	String):	User	
-	getPlayer(GameProject):	Player	
-	getSceneStateAndAddToScene(Scene):	void	
-	getSceneStatePairAndAddToScene(Scene):	void	
-	getGameContentAndAddToScene(Scene):	void	
-	getGameContentAndAddToPlayer(Player):	void	
-	getSceneAndAddToGP(GameProject):	void	
-	getGameSetting(int):	void	
-	getGameProject(String):	void	
+addPlayer(Player,	int):	void	
+	updatePlayer(Player,	int):	void	
+	addGameContent(GameContent,	Integer,	Integer):	void	
+	updateGameContent(GameContent,	Integer,	Integer):	void	
+	addGameProject(GameProject,	String):	void	
+	updateGameProject(GameProject,	String):	void	
+	addScene(Scene,	int):	void	
+	updateScene(Scene,	int):	void	
+	addSceneStatePair(SceneStatePair,	int):	void	
+	updateSceneStatePair(SceneStatePair,	int):	void	
+	addSceneState(SceneState,	int):	void	
+	updateSceneState(SceneState,	int):	void	
+	addGameSetting(GameSetting,	String,	GameProject):	void	
+	updateGameSetting(GameSetting,	String,	GameProject):	void	
	
	

ServerClientCommunicator:	Thread	



	 20	

-Socket:	socket	
-ObjectOutputStream:	oos	
-ObjectInputStream:	ois	
-ServerListener:	mServerListener	
-ServerManager:	mServerManager	
+ServerClientCommunicater(Socket,	ServerListener,	
ServerManager)	
+ServerClientCommunicater(Socket,	ServerWithoutGUI,	
ServerManager)	
+SendObject(Object):	void	
+run():	void	
+close():	void	
	
	

ServerListener:	Thread	
-ServerSocket:	mServerSocket	
-Vector<ServerClientCommunicator>:	sccVector	
-ServerManager:	mServerManager	
+ServerListener(ServerSocket)	
+run():	void	
+removeServerClientCommunicator(ServerClientCommunicator):	
void	
+close():	void	
	
	

ServerManager	
HashMap<ServerClientCommunicator,	User>:	ClientUserMap	
ServerListener:	mServerListener	
MySQLDriver:	mysql	
String:	s	
+ServerManager(ServerListener)	
+ServerManager(ServerWithoutGUI)	



	 21	

+addUser(ServerClientCommunicator,	String,	String):	void	
+UserLogin(String,	String,	ServerClientCommunicator):	void	
+dropUser(ServerClientCommunicator):	void	
+saveGameProject(ServerClientCommunicator,	GameProject):	
void	
	
	

ServerWithoutGUI:	Thread	
-ServerSocket:	mServerSocket	
-Vector<ServerClientCommunicator>:	sccVector	
-ServerManager:	mServerManager	
+ServerWithoutGUI()	
+run():	void	
+main(String[]):	void	
	
	

StoryCreatorServer	
-ServerSocket:	ss	
-ServerListener:	ServerListener	
+StoryCreatorServer()	
-listenForConnections():	void	
+sendUserArchiveFile():	void	
	
	

Server	
-	UserDatabase	mUserDatabase	
+	Server(int)	
+	main(String	[]	args)	
Server	–	It	listens	to	a	port	and	start	a	new	ServerThread	when	there	is	a	
new	connection.	This	will	create	server	GUI	as	well.	
	
	



	 22	

ServerThread:	Thread	
-	Socket	s	
-	BufferedReader	br	
-	PrintWriter	fw	
-	Server	mServer	
+	ServerThread(Socket,	Server)	
+	run():	void	
ServerThread	–	It	is	responsible	of	communicating	with	one	client:	
sending	and	receiving	information	
	
	

ServerGUI:	JFrame	
+long:	serialVersionUID	
-JTextField:	portTextField	
-JLabel:	descriptionLabel	
-JLabel:	portLabel	
-JLabel:	portErrorLabel	
-JButton:	submitPortButton	
-Lock:	portLock	
-Condition:	portCondition	
-ServerSocket:	ss	
-Image:	buttonimage	
-Image:	buttonpressed	
+ServerGUI()	
-initializeVariables():void	
-createGUI():void	
-addActionAdapters():void	
+getServerSocket():ServerSocket	
ServerGUI-is	able	to	connect	with	multiple	clients	and	deal	with	multiple	
requests	at	the	same	time.	When	ran	the	portPanel	will	show,	
displaying	the	portLabel,	a	textfield,	and	a	“Start	Listening”	button.	
After	a	valid	port	number	is	submitted,	the	window	will	show	our	logo	



	 23	

with	a	“Terminate”	button	that	stops	all	the	communications	when	
clicked.	
	
	

User[Serializable]	
-long:	serialVersionUID	
String:	username	
String:	encryptedPassword	
ArrayList<GameProject>:	mGamgeProject	
+User(String,	String)	
+setGameProject(ArrayList<GameProject>):	void	
+getName():	String		
+getPassword():	String	
+setPassword(String):	void	
+getGameProject(String):	GameProject	
+addGameProject(GameProject):	void	
+removeGameProject(GameProject):	void	
+createNewProject(String):	void	
+getGameProjects():	ArrayList<GameProject>	
	
User	Class	–	responsible	for	storing	information	about	one	user.	
Password	stored	must	be	encrypted	password	which	is	done	by	
UserDataBase	class.	No	plain	text	password	is	stored.	The	user	is	able	to	
create	new	game	project	or	open	existing	project.	SetPassword	method	
is	used	when	a	user	changes	his	password.	Int	type	differentiates	
between	a	guest	(1)	and	a	regular	user	(0).	
	
	

UserDataBase[Serializable]	
-long:	serialVersionUID	
-ArrayList<User>:	udb	
-MySQLDriver:	mysql	



	 24	

+LogIn(String,	String):	User	
+encrypt(String):	String	
+connect():	void	
+createNewUser(String,	String):	void	
+changePassword(String,	String,	String,	String):	void	
UserDataBase—the	main	database	in	the	server.	Has	private	member	
which	are	arraylist	of	registered	users	and	a	static	pre-instantiated	user	
which	is	guest.	Encrypt()	utilizes	hash	function	to	take	in	plain	text	
password	and	encrypts	it.	retrieveForgettenUserName()	is	called	when	a	
user	chooses	the	option	Forgot	username	and	input	his	email.	It	will	
return	the	username	matched	with	the	input	email.	
retrieveTemporaryPassword()	is	called	when	a	user	chooses	Forgot	
Password	and	input	his	username	and	email.	It	will	return	the	
temporary	newly	set	password	generated	by	the	server	for	the	user.	
Then	the	user	can	change	to	new	password	by	calling	the	
changePassword	method.	changePassword	method	will	take	in	
username	and	currentPassword	twice	for	confirmation	and	the	
newPassword.	Then	after	verifying	input	information,	it	will	call	
setPassword()	on	the	corresponding	user,	thus	changing	to	new	
password.				
Note:	All	data	is	stored	in	mySQL	database.	Simple	User	data	like	
username,	password,	email,	and	type	is	stored	in	a	user	database	table.	
But	for	the	arrayList<GameObject>,	there	will	be	a	separate	table	to	
store	each	game	object.	There	will	be	a	column	telling	which	
gameObject	belongs	to	which	users.			
		
	
Game	
Game	logics:	

Global	
-	Random	rGenerator	
+	getRandom():	int	



	 25	

Global	–	It	contains	a	getRandom()	method	which	will	generate	a	
random	int	number	based	on	current	time	and	each	of	them	is	
guaranteed	to	be	unique.			
	
	

GameObject:	[Serializable]	
-	long	serialVersionUID	
-	String:	name	
-	int:	objectID	
+	GameObject(String)	
+	getName():	String		
+	setName(String):	void	
+	getID():	int	
+	equalID(int):	boolean	
GameObject	–	The	very	basic	object	for	other	game	objects.	It	is	
guaranteed	that	each	GameObject	class	will	automatically	generate	a	
unique	ID	number	by	calling	Global	class	getRandom().	
	
	

SceneStatePair:	[Serializable]	
-	long	serialVersionUID	
+	int	sceneID	
+	int	stateID	
-	int	ID	
-	String	description	
-	int	x	
-	int	y	
-	int	w	
-	int	h	
+	int	usability	
+	SceneStatePair(Scene,	int)	
+	setID(int):	void	



	 26	

+	getID():	int	
+	getX():	int	
+	setX(int):	void	
+	getY():	int	
+	setY(int):	void	
+	getW():	int	
+	setW(int):	void	
+	getH():	int	
+	setH(int):	void	
+	getDescription():	String	
+	setDescription(String):	void	
+	toString():	String	
SceneStatePair	–	This	is	a	pair	of	scene	and	state.	This	is	used	for	easily	
store	a	Scene	with	a	specific	state	number.	
	
	

SceneState:	[Serializable]	
-	long	serialVersionUID	
-	ArrayList<Integer>	sceneChoices	
-	ArrayList<Integer>	gameContentChoices	
-	String	description	
-	int	x	
-	int	y	
-	int	w	
-	int	h	
-	String	imagePath	
+	SceneState	(String)	
+	getX():	int	
+	setX(int):	void	
+	getY():	int	
+	setY(int):	void	
+	getW():	int	



	 27	

+	setW(int):	void	
+	getH():	int	
+	setH(int):	void	
+	addSceneID(Integer):	void	
+	removelinkedScene(integer):	void	
+	getSceneChoices():	ArrayList<Integer>	
+	setDescription(String):	void	
+	getImageChoice():	String	
+	getImageChoice():	String	
+	setImagePath(String):	void	
+	getDescriptionID():	String	
+	setImagePath(String):	void	
+	getDescriptionID():	String	
+	addGameContentChoice(Integer):	void	
+	removeGameContentChoice(Integer):	void	
+	getGameContentChoice():	ArrayList<Integer>	
+	toString():	String	
SceneState	–	It	is	used	to	store	which	description	texts,	linked	
SceneStatePairs	and	GameContenets	are	chosen	for	this	scene	state.	
	
	

GameContent:	GameObject	
-int:	x	
-int:	y	
-int:	w	
-int:	h	
+int	usability	
+	long	serialVersionUID	
-	String	imagePath	
-	String	description	
+	GameContent	(String,	String)	
+	getX():	int	



	 28	

+	setX(int):	void	
+	getY():	int	
+	setY(int):	void	
+	getW():	int	
+	setW(int):	void	
+	getH():	void	
+	setH(int):	void	
+	setDescription(String):	void	
+	lookup():	String	
+	setImage(String):	void	
+	getImagePath():	String	
+	toString():	String	
GameContent	–	It	contain	an	image	and	description	texts	that	would	be	
shown	in	a	scene	when	this	GameContent	is	chosen.	
	
	

Player:	GameObject	
-	long	serialVersionUID	
ArrayList<GameContent>	itemList	
+	Player	(String)	
+	pickup(GameContent):	void	
+	drop(int):	void	
+getItems():	ArrayList<GameContent>	
Player-	It	represents	the	player	in	the	game,	which	has	a	bag	that	could	
store	all	items	he	meet	in	game.	
	
	
	

Scene:	GameObject	
-	long	serialVersionUID	
=	HashMap<Integer,	SceneState>	ownSceneStates	
=	HashMap<Integer,	SceneStatePair>	linkedScenes	



	 29	

=	HashMap<Integer,	GameContent>	mGameContents	
-	int	currentSceneState	
+	Scene	(String)	
+	addSceneState(SceneState):	void	
+	removeSceneState(int):	Boolean	
+	getSceneState(int):	SceneState	
+	getAllSceneStates():	HashMap<Integer,	SceneState>	
+	getAllSceneStatePairs():	HashMap<Integer,	SceneStatePair>	
+	getAllGameContents():	HashMap<Integer,	GameContent>	
+	setCurrentSceneState(int):	void	
+	addlinkedScenes(SceneStatePair):	void	
+	removelinkedScenes(int):	void	
+	getSceneStatePair(int):	SceneStatePair	
+	addGameContent(GameContent):	void	
+	removeGameContent(int):	vid	
+	getGameContent(int):	GameContent	
+	getCurrentSceneStateNum():	int	
+	getCurrentSceneState():	SceneState	
+	getCurrentSceneState():	SceneState	
+	toString():	String	
	
Scene	–	It	stores	all	description	texts,	linked	SceneStatePairs,	
GameContent,	and	SceneStates.	It	is	responsible	of	changing	SceneState	
and	providing	corresponding	description	texts,	GameContents,	and	
SceneStatePairs.	
	
	

GameProject:	GameObject	
-	long	serialVersionUID	
-	HashMap<Integer,	Scene>	SceneList	
-	Player	mPlayer	
-	GameSetting	mGameSetting	



	 30	

+	GameProject(String)	
+	addScene(Scene):	void	
+	removeScene(int):	void	
+	getScene(int):	Scene	
+	getSceneMap():	HashMap<Integer,	Scene>	
+	setPlayer(Player):	void	
+	getPlayer():	Player	
+	setGameSetting(GameSetting):	void	
+	getGameSetting():	GameSetting	
+	setId(int):	void	
GameProject	–	It	stores	all	the	data	of	a	game	including	Scenes,	
GameContents,	Player,	and	GameSetting.	 	
	
	

GameGUI:	JFrame	
-	long	serialVersionUID	
-	GameProject	mGameProject	
-	JPanel	overalPanel	
-	JPanel	sceneDescription	
-	JPanel	sceneContents	
-	JPanel	sceneButton	
-	JLbael	DescriptionText	
-	Scene	currentScene	
+	GameGuiClass(GameProject)	
+	refresh():	void	
+	class	buttonActionListener:	[ActionListener]	
+	class	contentActionListener:	[ActionListener]	
	
GameGui	-	The	GameGui	is	responsible	for	showing	every	Scenes	in	a	
GameProject.	It	will	display	one	SceneState	of	one	Scene	at	one	time	
and	provides	buttons	for	players	to	interact	(Change	State/Scenes).		
	



	 31	

	
GameSetting[Serializable]	

-	long	serialVersionUID	
-	Image	bgimageString	
-	Image	releaseButtonimageString	
-	Image	pressedButtonimageString	
-	String	fontString	
-	int	textFontSize	
-	String	textFontColor	
-	int	buttonFontSize	
-	String	buttonFontColor	
-	int	initialScene	
-	int	initialState	
+	getInitialScene():	int	
+	setInitialScene(int):	void	
+	getInitialStante():	int	
+	setInitialState(int):	void	
+	GameSetting()	
+	GameSetting(String,String,	String,	String,	int,	String,	int,	String,	
int,	int)	
+	setBackgroundImage(String):	void	
+	getBackgroundImage():	String	
+	setReleasedButtonImage(String):	void	
+	getReleasedButtonString():	String	
+	setPressedButtonString(String):	void	
+	getPressedButtonString():	String	
+	setFont(String):void	
+	getFont():	String	
+	setTextFontSize(int):	void	
+	getTextFontSize():	int	
+	setTextFontColor(String):	void	
+	getTextFontColor():	String	



	 32	

+	setButtonFontSize(int):	void	
+	getButtonFontSize():	int	
+	setButtonFontColor(String):	void	
+	getButtonFontColor():	String		
GameSetting	–	The	class	that	stores	the	user’s	GUI	settings	for	game,	
like	how	the	buttons	and	text	would	look	like	and	the	background.	
	
	
Client	
	

StoryCreatorClientWindow:	JFrame	
-	long:	serialVersionUID	
-	Dimension	minSize	
-	LoginWindow	mLoginWindow	
-	CreateFileWindow	mCreateFileWindow	
-	MainWindow	mMainWindow	
-	LoadingWindow	mLoadingWindow	
-	JPanel	OverallPanel	
-	ClientListener	cls	
+	StoryCreatorClientWindow()	
+	getLoginSuccessSignal(LoginSuccessSignal):	void	
+	getSignUpSignal(SignUpSuccessSignal):	void	
+	getUserSignal(UserSignal):	void	
+	BackToLoginWindow():	void	
+	getChangepasswordsccSignal(ChangePasswordSuccessSignal):	
void	
+	SaveFileSuccess():	void	
class:	WindowServerActionListener	
class:	LoginLoadinglistener	
class:	CreateFileConfirm	
class:	CreateFileLogOut	
class:	LoginAsGuestListener	



	 33	

StoryCreatorClientWindow	–	it	is	the	main	JFrame	of	the	software.	It	will	
store	two	panels:	LoginWindow	panel	and	CreateFileWindow.	The	main	
method	will	generate	a	new	SotryCreatorClientWindow.	
	
	
	

StoryCreator	
StoryCreator()	
+	main(String[]):	void	
	
	

ClientListener:	Thread	
-	Socket	mSocket	
-	ObjectInputStream	ois	
-	ObjectOutputStream	oos	
-	StoryCreatorClientWindow	mStoryCreatorClientWindow	
+	setStoryCreatorClientWindow(StoryCreatorClientWindow):	void	
+	ClientListener(int,	String)	
+	Login(String,	String):	void	
+	signUp(String,	String):	void	
+	changePassword(String,	String,	String_:	void	
-	initializeVariables():	Boolean	
+	run():	void	
+	SendObjectToServer(Object):	void	
	
	

ServerWindow:	JFrame	
-	long:	serialVersionUID	
Font	font	
+	ServerWindow(ActionListener)	
	
	



	 34	

LoadingWindow:	JPanel	
-	long:	serialVersionUID	
	
	

LoginWindow:	JPanel	
-	long	serialVersionUID	
JLabel:	title	
JLabel:	userLabel	
JLabel:	passwordLabel	
JTextField:	userField	
JPasswordField:	passwordField	
JButton:	loginButton	
Icon:	gifIcon	
JLabel:	signUp	
JLabel:	guest	
JLabel:	changePassword	
BufferedImage:	image	
JLabel:	logoLabel	
JPanel:	buttonPabel	
JMenuBar:	menuBar	
JMenuL	menu	
JMenuItem:	menuItem	
MouseListener:	loginButtonActionListener	
MouseListener:	loginAsGuestListener	
WindowServerActionListener:	windowServerActionListener	
Font:	font	
Font:	font1	
SignUpWindow:	sw	
Color:	color	
+boolean:	isPressed	
ClientListener:	mClientListener	
+class	BackgroundMenuBar:	



	 35	

		+long:	serialVersionUID	
		=paintComponent(Graphics):	void	
+class	BackgroundMenu:	
		+long:	serialVersionUID	
		+BackgroundMenu(String)	
		=paintComponent(Graphics):	void	
+	LoginWindow(LoginLoadingListener,	LoginAsGuestListener,	
WindowServerActionListener)	
+ChangeToNextLogo():	void	
+setClientListener(ClientListener):	void	
+	setup()	:	void	
+addUser(String,	String):	void	
+closeSignUpWindow()L	void	
+isConnected():	Boolean	
+getLoginName():	String	
+getPassword():	String	
LoginWindow	–	The	LoginWindow	is	responsible	of	connecting	with	
server	and	complete	a	series	of	user	options.	It	will	pass	a	User	class	to	
the	next	level	GUI	class.	
	
	

CreateFileWindow:	JPanel	
+	long:	serialVersionUID	
-	User:	mUser	
-JButton:	userButton	
-JButton:	createNewButton	
-JButton:	openFileButton	
-	JButton[]:	templateButtons	
-	JScrollPane:	templateSP	
-GameTemplate:	mGameTemplates	
-GameProject:	mProject	
-ActionListener:	confirmAction	



	 36	

-JButton:	createButton	
-Color:	default_color	
-Font:	font	
+getGameProject():	GameProject	
+	CreateFileWindow(ActionListener,	ActionListener)	
-initializeVariables():	void	
-createGUI():	void	
-addActionAdapters(ActionListener,	ActionListener):	void	
-showRemoteFiles():	void	
+setUser(User):	void	
+getUser():	User	
CreateFileWindow	–	Window	opened	after	the	user	logs	in.	It	allows	the	
user	to	either	select	a	template	to	create	a	new	game,	or	open	either	a	
local	or	remote	file	to	work	on	a	previous	game.	The	user	can	also	
choose	to	logout.	Each	of	the	templateButtons	is	a	simple	preview	of	
the	templates	background	and	font,	and	the	user	must	choose	a	default	
template	or	customize	one	in	order	to	proceed	to	the	main	window.	No	
matter	what	the	user	chooses	to	do,	a	GameProject	must	be	passed	on	
to	the	next	window.	
	
	
MainArea:	

CreateGameContentDialog	
-GameContent:	mGameContent	
+Enum:	FieldTitle	
-Color	:	color	
-Font	:	font	
-Insets:	WEST_INSETS	
-Insets:	EAST_INSETS		
-Image:	notifyImg	
-Map<FieldTitle,	JTextField>:	fieldMap	
-JTextField:	nameField	



	 37	

	

-JTextField:	dspField		
-JTextField:	imgField		
-JPanel:	mainPanel		
-JPanel:	optionPanel	
-JPanel:	previewPanel	
-String:	imgPath	
+CreateGameContentDialog(Component)	
-createGbc(int,	int):	GridBagConstraints	
+	getFieldText(FieldTitle):	String	
+	getContent():	GameContent	
+	main(String[]):	void	

GameSettingDialog:	JDialog	
-Long:	serialVersionUID	
-Insets:	WEST_INSETS	
-Insets:	EAST_INSETS	
-JPanel:	mainPanel	
-JTextField:	bgImgField	
-JTextField:	pButtonField	
-JTextField:	rButtonField	
-JComboBox<Scene>:	sceneBox		
-JComboBox<SceneState>:	stateBox	
-JTextField:	fontField	
-JPanel:	optionPanel	
-GameSetting:	mGameSetting	
-Integer[]:	fontSizeList		
-Color[]:	colorList		
-String[]:	fontColorList	
-JComboBox<Integer>:	ButtonfontSizeBox	
-ButtonfontColorBox	:	JComboBox<String>	
-TextfontSizeBox	:	JComboBox<Integer>	
-TextfontColorBox	:	JComboBox<String>	



	 38	

	

	
	

MainWindow:	JFrame	
-	long:	serialVersionUID	
-JPanel:	mainPanel	
-JPanel:	firstPanel	
-	JPanel:	upPanel	
-JPanel:	bottomPanel	
-JPanel:	secondPanel	
-JPanel:	thirdPanel	
-String:	savedFilePath	
-Image:	notifyImg	
-Image:	playImg	

int:	sceneID	
int:	stateID	
Color:	color	
Font:	font	
+initVariable():	void	
+GameSettingDialog(GameProject)	
-createGbc(int,	int):	GridBagConstraints	
+main(String[]):	void	
-createFileChooser(JTextField):	void	

InputHelper	
-UpdateTool:	mUpdateTool	
+String:	NAME	
+String:	DESCRIPTION	
+String:	IMAGE	
+InputHelper(UpdateTool)	
+setSceneInputListener(JTextField,	Scene):	void	
+setSceneStateInputListener(JTextField,	SceneState,	String):	void	



	 39	

-Image:	stopImg	
-Image:	treeIcon1	
-Image:	treeIcon2		
-GameProject:	mGameProject	
-User:	mUser	
-JScrollPane:	hierarchyContentPanel	
-JTree:	hierarchyTree	
-DefaultTreeModel:	defaultTreeModel	
-CustomTreeCellRenderer:	ctcr		
-JTabbedPane:	workPanel	
-JPanel:	previewPanel	
-JPanel:	editPanel	
-UpdateTool:	mUpdateTool	
-InputHelper:	mInputHelper	
-JPanel:	settingContainer	
-GameSetting:	mGameSetting	
-Dimension:	dSize	
-JFrame:	thisWindow	
-Scene:	ownScene	
-ClientListener:	mClientListener	
-GameFrame:	myFrame	
+MainWindow(GameProject,	User,	BackTpCreateFile)	
-setUIFont(FontUIResource):	void	
-saveToFileMethod(int):	void	
-initializeGUI():	void	
-createMenu():	void	
-addNewScene():	void	
-addNewState(Object):	void	
-addNodeToDefaultTreeModel(DefaultTreeModel,	
DefaultMutableTreeNode,	DefaultMutableTreeNode):	void	
-createHierarchyPanel():	void	
+setPreviewandSetting(Scene):	void	



	 40	

-createWorkPanel():	void	
-createSettingPanel():	void	
-refreshFrame(GameProject):	void	
+refreshSetting(ArrayList<ObjectLocationPanel>):	void	
+setClientListener(ClientListener):	void	
+SaveRemote(GameProject):	void	
+SaveSuccess():	void	
-class:	NewFileActionListener	
-class:	SaveActionListener	
-class:	OpenActionListener	
-class:	CloseActionListener	
-class:	HelpMenuActionListener	
class:	tappedPanelListener	
+class:	TutorialWindow	
class:	UpdateTool	
class:	CustomTreeCellRenderer	
MainWindow	–	The	main	GUI	for	the	StoryCreator,	it	houses	a	
JMenuBar	for	basic	operation,	a	left	panel	to	show	the	Hierarchy	Tree,	a	
center	panel	to	hold	the	preview	and	edit	panel	and	a	right	panel	to	
show	the	outline	of	present	project.		
	
	
	

OutlinePanel:	JPanel,	[Runnable]	
+	long:	serialVersionUID	
-	JPanel	centerPanel	
+	OutlinePanel()	
-	createSceneState():	void	
-	refreshComponents():	void	
-	linkSceneState(State,	State):	void	
OutlinePanel	–	it	is	a	JPanel	that	implement	all	the	functionality	of	
showing	project	outline,	including	create	new	scene	state	on	the	outline	



	 41	

panel,	link	two	scene	states	on	the	outline	panel.	The	class	should	
implement	runnable	so	that	it	should	call	refreshComponents()	method	
whenever	the	edit	panel	is	changed.	
	
	

PlayControl:	Thread	
-GameProject	mGameProject	
+	PlayControl(GameProject)	
+	run():	void	
PlayControl	–	it	is	the	main	class	to	run	the	game	user	create.	The	class	
should	extends	Thread	so	that	the	user	can	run	several	game	at	one	
time.	In	the	class,	it	should	take	in	one	GameProject	component	to	help	
create	GameGUI.	Also	the	class	should	override	run()	method	to	create	
the	GameGUI.	
	
	

ObjectLocationPanel:	JPanel	
-long	serialVersionUID	
-String	SCENESTATE	
-String	SCENESTATEPAIR	
-String	GAMECONTENT	
-JTextField	xfield	
-JTextField	yfield	
-JTextField	wfield	
-JTextField	hfield	
-JSlider	jsldHortX	
-JSlider	jsldHortY	
-JSlider	jsldHortW	
-JSlider	jsldHortH	
-SceneStatePair	mSceneStatePair	
-SceneState	mSceneState	
-GameContent	mgContent	



	 42	

-String	type	
-int	ix	
-int	iy	
-int	iw	
-int	ih	
-GamePanel	mGamePanel	
ObjectLocationLanel(SceneState,	GamePanel)	
ObjectLocationLanel(SceneStatePair,	GamePanel)	
ObjectLocationLanel(GameContent,	GamePanel)	
-instaniation(String):	void	
-class:	SliderChangeListener	
-class:	InputChangeListener	
class:	GameContentUpdateValue	
class:	DescriptionUpdateValue	
class:	sspUpdateValue	
	
	

PlayerDialog:	JDialog	
-long	serialVersionUID	
-Insets	WERT_INSETS	
-Insets	EAST_INSETS	
-JPanel	mainPanel	
-JTextField	nameField	
-JPanel	optionPanel	
-PlayerDialog	thisPD	
-Color	default_color	
-Font	font	
-Image	notifyImg	
PlayerDialog()	
-createGbc(int,	int):	GridBagConstraints	
	
	



	 43	

SaveTypeDialog:	JDialog	
-long	serialVersionUID	
-JComboBox<String>	jcb	
-String	saveLocation	
+Boolean	resume	
SaveTypeDialog()	
+getSaveLocation():	String	
	
	

SceneEditPanel:	GameObject	
-	long:	serialVersionUID	
-	ArrayList<Integer>	sceneChoices	
-	ArrayList<Integer>	gameContentChoices	
-	String	description	
-	Int	x	
-	Int	y	
-	Int	w	
-	Int	h	
-	String	imagePath	
+	void	SceneState(String)	
+	Int	getX()	
+	void	setX(int)	
+	Int	getY()	
+	void	setY(int)	
+	Int	getW()	
+	void	setW(int)	
+	Int	getH()	
+	void	setH(int)	
+	void	addSceneID(Integer)	
+	void	removelinkedScene(Integer)	
+	ArrayList<Integer>	getSceneChoice()	
+	void	setDescription(String)	



	 44	

+	String	getImageChoice()	
+	void	setImageChoice(string)	
+	void	getDescriptionID()	String	
+	void	getGameContent(Integer)	
+	void	removeGameContentChoice(Integer)	
+	ArrayList<Integer>	getGameContentChoices()	
+	String	toString()		

	
	

SceneStateEditPanel:	[Serializable]	
-	long:	serialVersionUID	
+	Scene	mScene	
+	SceneState	mState	
-	GameProject	mGameProject	
-	InputHelper	minputHelper	
-	Boolean	CtrlPressed	
-	Boolean	AltPressed	
-	Image	notifyimg	
+	SceneStateEditPanel(Scene,	GameProject,	InputHelper)	
-	void	createGUI()	
	
Class	LinkedSceneinfor:	
-	GameProject	mGameProject	
-	SceneStatePair	mSceneStatePair	
+	LinkedSceneInfor(GameProject,	SceneStatePair)	
+	SceneStatePair	getContent()	
+	String	toString	()	



	 45	

	
Class	GameContentInfor:	
-	GameContent	mGameContent	
+	GameContent	GameContentInfor()	
+	getContent()	
+	String	toString	()	
	
Class	GameContentInfor:	
-	GameContent	mGameContent	
+	GameContentInfor(GameContent)	
+	GameContent	getContent()	
+	String	toString	()	
	
Class	sceneStateCreateDialog:	
-	Int	SceneID	
-	Int	StateID	
-	String	desString	
-	Font	font	
-	Font	font1	
-	Color	color	
SceneStateCreateDialog(GameProject,	Component)	
	
Class	SceneStateUpdateDialog:	
+	void	CheckAll()		
	
	
PopupWindow:	

ChangePassword:	JDialog	
-	long:	serialVersionUID	
+	class	MouseAdapter:	[MouseAdapter]	
+	class	WindowAdapter:	[windowClosing]	
+	WindowAdapter()	



	 46	

+	Void	Close()	
+	Font	font	
+	JTextField	username	
+	JTextField	oldPassword	
+	JTextField	newPassword	
ChangePassword	–	it	is	the	popup	window	for	login	in.	It	will	let	user	
enter	username,	old	and	new	password.	
	
	

OneImageTwoButton:	JDialog	
-	long:	serialVersionUID	
-	Int	choice	
-	Font	font	
+	class	MouseAdapter:	[MouseAdapter]	
+	class	WindowAdapter:	[windowClosing]	
+	Int	getContent()	
OneImageTwoButton–	it	is	the	popup	window	for	dialog	that	has	image	
and	two	buttons.		
	
	

OneSentenceTwoButton:	JDialog	
-	long:	serialVersionUID	
-	Font	font	
-	Int	choice		
-	Boolean	isPressed	
+	class	MouseAdapter:	[MouseAdapter]	
+	class	WindowAdapter:	[windowClosing]	
+	Int	getContent()	
OneSentenceTwoButton–	it	is	the	popup	window	for	dialog	that	has	
JLabel	and	two	buttons.		
	
	



	 47	

OneTextFieldTwoButton:	JDialog	
-	long:	serialVersionUID	
-	Font	font	
-	String	input	
+	class	MouseAdapter:	[MouseAdapter]	
+	class	WindowAdapter:	[windowClosing]	
+	class	OneTextFieldTwoButton(Component,	String,	String,	String,	
String)	
+	class	OneTextFieldTwoButton(Component)	
+	class	OneTextFieldTwoButton(Component,	String,	String)	
+	Int	getContent()	
OneTextFieldTwoButton	–	it	is	the	popup	window	for	dialog	that	has	
JLabel	and	two	buttons.		
	

SignUpWindow:	JDialog	
-	long:	serialVersionUID	
-	Font	font	
-	String	input	
-	JTextField	username	
-	JTextField	password	
+	class	MouseAdapter:	[MouseAdapter]	
+	class	WindowAdapter:	[windowClosing]	
+	class	MouseAdapter:	[MouseAdapter]	
+	void	close()	
	
	
	
	
	
	
	
	



	 48	

	
	
	
	
	
Use	Case	Diagram:	

	
	
	

	
	
	
	
	
	
	
	
	
	



	 49	

	
	
	

Testing	
Game	
	
Login:	
Test#	 1	

Test	Description	 If	auto	connection	is	successful,	status	label	will	
show	some	message	

Steps	to	run	test	 1.Change	default	port	or	hostname	to	some	valid	
value	
2.Run	StoryCreatorClientWindow	

Expected	Result	 The	status	label	has	message	that	indicates	
connection	is	successful	

Actual	Result	 The	status	label	has	message	that	indicates	
connection	is	successful	

	
	
	
	
Test#	 2	

Test	Description	 If	auto	connection	is	failed,	status	label	will	show	
some	message.	User	can	change	the	default	port	and	
hostname	and	try	again	

Steps	to	run	test	 1.Change	default	port	or	hostname	to	some	invalid	
value	
2.Run	StoryCreatorClientWindow	
3.Click	Setting	



	 50	

4.Click	Connect	
5.Enter	correct	value	in	the	pop	up	window	that	
contains	text	fields	and	one	confirm	button	
6.click	“connect”	button	

Expected	Result	 Initially,	status	label	should	show	some	message	that	
indicates	connection	is	failed.	After	user	enters	
correct	value	and	presses	connect	button,	The	status	
label	should	show	some	message	that	indicates	
connection	is	successful	

Actual	Result	 Initially,	status	label	should	show	some	message	that	
indicates	connection	is	failed.	After	user	enters	
correct	value	and	presses	connect	button,	The	status	
label	should	show	some	message	that	indicates	
connection	is	successful	

	
	
	
Test#	 3	

Test	Description	 If	username	and	password	are	incorrect.	A	window	
will	pop	up.	

Steps	to	run	test	 1.Run	StoryCreatorClientWindow	
2.Enter	incorrect	username	and	password	
3.Click	login	button	

Expected	Result	 A	message	window	should	pop	up	to	notify	user	that	
username	or	password	is	incorrect.	

Actual	Result	 A	message	window	should	pop	up	to	notify	user	that	
username	or	password	is	incorrect.	

	
	



	 51	

Test#	 4	

Test	Description	 If	username	and	password	are	correct.	User	will	
proceed	to	the	next	window	

Steps	to	run	test	 1.Run	StoryCreatorClientWindow	
2.Enter	correct	username	and	password	
3.Click	login	button	

Expected	Result	 User	should	be	proceed	to	the	next	window	

Actual	Result	 User	proceed	to	the	next	window	
	
	
	
Test#	 5	

Test	Description	 SignUp	button	pop	up	a	window.	If	username,	
password	or	email	address	is	invalid,	a	window	will	
pop	up	

Steps	to	run	test	 1.Run	StoryCreatorClientWindow	
2.Click	signUp	button	
3.A	window	that	contains	username,	password,	
email	address	textfield	and	one	confirm	button	will	
pop	up	
4.Enter	invalid	username,	password	or	email	address	
5.Click	confirm	button		

Expected	Result	 A	message	window	should	pop	up	to	notify	user	that	
username,	password	and	email	address	is	invalid.	

Actual	Result	 A	message	window	should	pop	up	to	notify	user	that	
username,	password	and	email	address	is	invalid.	

	
	



	 52	

Test#	 6	

Test	Description	 SignUp	button	pop	up	a	window.	If	username,	
password	and	email	address	are	all	valid,	a	window	
will	pop	up	that	notifies	user	signup	is	successful.	

Steps	to	run	test	 1.Run	StoryCreatorClientWindow	
2.Click	signUp	button	
3.A	window	that	contains	username,	password,	
email	address	textfield	and	one	confirm	button	will	
pop	up	
4.Enter	invalid	username,	password	and	email	
address	
5.Click	confirm	button		

Expected	Result	 A	window	should	pop	up	that	notifies	user	signup	is	
successful.	

Actual	Result	 A	window	should	pop	up	that	notifies	user	signup	is	
successful.	

	
	
	
Test#	 7	

Test	Description	 Login	as	Guest	pops	up	a	window.	User	will	proceed	
to	the	next	window	

Steps	to	run	test	 1.Run	StoryCreatorClientWindow	
2.Click	login	as	guest	
	

Expected	Result	 User	should	be	proceed	to	the	next	window	

Actual	Result	 User	should	be	proceed	to	the	next	window	

	



	 53	

	
Create	File:	
Test	#	 01	
Test	
Description	

A	JDialog	should	pop	up	when	the	User	button	
is	clicked.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Press	the	User	button	

Expected	
Result	

A	JDialog	showing	the	username	and	a	Logout	
button	should	pop	up.	

Actual	Result	 A	JDialog	showing	the	username	and	a	Logout	
button	should	pop	up.	

	
	
	
Test	#	 02	
Test	
Description	

The	user	should	be	able	to	logout.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Press	the	User	button	
4. Press	the	Logout	button	

Expected	
Result	

User	logs	out	and	returns	to	the	LoginWindow.	

Actual	Result	 User	logs	out	and	returns	to	the	LoginWindow.	
	
	
	
Test	#	 03	
Test	
Description	

Default	templates	should	be	showing	in	the	
main	area	of	the	window.	



	 54	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	

Expected	
Result	

7	Predesigned	templates	and	1	default	template	
should	show	up	in	the	form	of	the	JButtons.	

Actual	Result	 7	Predesigned	templates	and	1	default	template	
should	show	up	in	the	form	of	the	JButtons.	

	
	
	
Test	#	 04	
Test	
Description	

User	should	be	able	to	choose	a	template.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Click	on	a	template	button	

Expected	
Result	

The	template	should	be	highlighted.	

Actual	Result	 The	template	should	be	highlighted.	
	
	
	
Test	#	 05	
Test	
Description	

User	should	be	able	to	create	a	new	game	
project	with	a	chosen	template.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Click	on	a	template	button	
4. Click	on	the	create	button	

Expected	
Result	

The	client’s	MainWindow	should	show	up	with	
the	chosen	template	designs	displaying	and	
ready	to	use.	



	 55	

Actual	Result	 The	client’s	MainWindow	should	show	up	with	
the	chosen	template	designs	displaying	and	
ready	to	use.	

	
	
	
Test	#	 06	
Test	
Description	

A	JDialog	should	open	when	the	user	clicks	the	
open	button	and	lets	the	user	choose	between	
opening	a	local	file	or	a	remote	file.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Click	on	the	open	button	

Expected	
Result	

A	JDialog	pops	up	with	two	buttons:	“Local	File”	
and	“Remote	File”	

Actual	Result	 A	JDialog	pops	up	with	two	buttons:	“Local	File”	
and	“Remote	File”	

	
	
	
Test	#	 07	
Test	
Description	

A	JFileChooser	opens	when	the	user	wants	to	
open	a	local	file.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Click	on	the	open	button	
4. Click	on	the	Local	File	button	

Expected	
Result	

A	JFileChooser	pops	up	

Actual	Result	 A	JFileChooser	pops	up	
	
	



	 56	

	
Test	#	 08	
Test	
Description	

The	JFileChooser	should	allow	the	user	to	open	
a	.txt	file.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Click	the	open	button	
4. Click	the	Local	File	button	
5. Try	to	open	a	.txt	file	

Expected	
Result	

The	client	should	proceed	to	the	MainWindow	
with	the	chosen	.txt	file	loaded	and	previously	
saved	work	displayed.	

Actual	Result	 The	client	should	proceed	to	the	MainWindow	
with	the	chosen	.txt	file	loaded	and	previously	
saved	work	displayed.	

	
	
	
Test	#	 09	
Test	
Description	

The	JFileChooser	should	only	allow	the	user	to	
open	a	.txt	file.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Click	the	open	button	
4. Click	the	Local	File	button	
5. Try	to	open	a	file	that	is	not	a	.txt	file	

Expected	
Result	

The	client	should	not	proceed	to	the	
MainWindow,	would	give	out	a	warning	and	let	
the	user	choose	a	file	again.	

Actual	Result	 The	client	should	not	proceed	to	the	
MainWindow,	would	give	out	a	warning	and	let	
the	user	choose	a	file	again.	



	 57	

	
Test	#	 10	
Test	
Description	

A	new	JDialog	should	pop	up	if	the	user	chooses	
to	open	a	remote	file	saved	on	the	server.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Click	the	open	button	
4. Clock	the	Remote	File	button	

Expected	
Result	

A	new	JDialog	pops	up	showing	the	user’s	
previous	GameProjects	saved	on	the	server	in	
the	form	of	a	combobox.	

Actual	Result	 A	new	JDialog	pops	up	showing	the	user’s	
previous	GameProjects	saved	on	the	server	in	
the	form	of	a	combobox.	

	
	
	
Test	#	 11	
Test	
Description	

The	user	should	be	able	to	choose	a	
GameProject	saved	on	the	server	to	work	on	if	
he	or	she	has	saved	GameProjects	previously.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Click	the	open	button	
4. Click	the	Remote	File	button	
5. Choose	a	file	and	click	OK	

Expected	
Result	

The	user	should	proceed	to	the	client’s	
MainWindow	when	chosen	a	GameProject	from	
a	combobox.	

Actual	Result	 The	user	should	proceed	to	the	client’s	
MainWindow	when	chosen	a	GameProject	from	
a	combobox.	



	 58	

	
Test	#	 12	
Test	
Description	

The	user	should	be	prompt	to	do	something	else	
if	he	or	she	doesn’t	have	any	files	saved	on	the	
server.	

Steps	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	the	CreateFileWindow	
3. Clock	the	open	button	
4. Click	the	Remote	File	button	

Expected	
Result	

The	JDialog	would	prompt	the	user	that	there	
are	no	saved	GameProjects	on	the	server	and	
the	user	should	either	open	a	local	file	or	create	
a	new	GameProject	from	a	template.	

Actual	Result	 The	JDialog	prompts	the	user	that	there	are	no	
saved	GameProjects	on	the	server	and	the	user	
should	either	open	a	local	file	or	create	a	new	
GameProject	from	a	template.	

	
	
	
	
MainWindow	
	
Test	#	 01	
Test	
Description	

Every	JMenuBar	show	correct	output	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“File”	button	on	Menu	
4. Press	the	“Asset”	button	on	Menu	
5. Press	the	“Object”	button	on	Menu	
6. Press	the	“Help”	Button	on	Menu	



	 59	

Expected	
Result	

1. Show	up	“New”,	“Open	File…”,	“Save”	,	
“Upload”,	“Close”,	and	“GUI	Setting”	when	
clicking	“File”	button	

2. Show	up	“Import	Image”	when	clicking	“Asset”	
button	

3. Show	up	“Player”	and	“Game	Content”	
4. Show	up	“Tutorial”	when	clicking	“Help”	button	

Actual	
Result	

1. Show	up	“New”,	“Open	File…”,	“Save”	,	
“Upload”,	“Close”,	and	“GUI	Setting”	when	
clicking	“File”	button	

2. Show	up	“Import	Image”	when	clicking	“Asset”	
button	

3. Show	up	“Player”	and	“Game	Content”	
4. Show	up	“Tutorial”	when	clicking	“Help”	button	

	
	
	
	
Test	#	 02	
Test	
Description	

User	should	be	able	to	save	the	current	file	and	
create	a	new	file	when	clicking	“New”	button	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“File”	button	on	Menu	
4. Press	the	“New”	button		

Expected	
Result	

1. The	software	should	pop	up	a	JDialog	to	allow	
user	save	his	or	her	file	to	a	certain	path.	(If	the	
file	has	already	been	saved	before,	the	JDialog	
will	not	show	up	and	the	file	will	automatically	
be	saved	to	the	previous	path)	



	 60	

2. The	software	then	should	return	to	the	
CreateFileWindow	to	let	user	chooses	a	
template	and	create	a	new	file	

Actual	
Result	

1. The	software	should	pop	up	a	JDialog	to	allow	
user	save	his	or	her	file	to	a	certain	path.	(If	the	
file	has	already	been	saved	before,	the	JDialog	
will	not	show	up	and	the	file	will	automatically	
be	saved	to	the	previous	path)	

2. The	software	then	should	return	to	the	
CreateFileWindow	to	let	user	chooses	a	
template	and	create	a	new	file	

	
	
	
	
Test	#	 03	
Test	
Description	

User	should	be	able	to	save	the	current	file	and	open	
a	existing	file	when	clicking	“Open	File…”	button	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“File”	button	on	Menu	
4. Press	the	“Open	File”	button	

Expected	
Result	

1. The	software	should	pop	up	a	JDialog	to	allow	
user	save	his	or	her	file	to	a	certain	path.	(If	the	
file	has	already	been	saved	before,	the	JDialog	
will	not	show	up	and	the	file	will	automatically	
be	saved	to	the	previous	path)	

2. The	software	then	should	return	to	the	
CreateFileWindow	to	let	user	chooses	an	
existing	project	

Actual	
Result	

1. The	software	should	pop	up	a	JDialog	to	allow	
user	save	his	or	her	file	to	a	certain	path.	(If	the	



	 61	

file	has	already	been	saved	before,	the	JDialog	
will	not	show	up	and	the	file	will	automatically	
be	saved	to	the	previous	path)	

2. The	software	then	should	return	to	the	
CreateFileWindow	to	let	user	chooses	an	
existing	project	

	
	
	
	
Test	#	 04	
Test	
Description	

User	should	be	able	to	save	the	current	file	and	
closes	it	when	clicking	“Close”	button	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“File”	button	on	Menu	
4. Press	the	“Close”	button	

Expected	
Result	

1. The	software	should	pop	up	a	JDialog	to	allow	
user	save	his	or	her	file	to	a	certain	path.	(If	the	
file	has	already	been	saved	before,	the	JDialog	
will	not	show	up	and	the	file	will	automatically	
be	saved	to	the	previous	path)	

2. The	software	then	should	terminate	
Actual	
Result	

1. The	software	should	pop	up	a	JDialog	to	allow	
user	save	his	or	her	file	to	a	certain	path.	(If	the	
file	has	already	been	saved	before,	the	JDialog	
will	not	show	up	and	the	file	will	automatically	
be	saved	to	the	previous	path)	

2. The	software	then	should	terminate	
	
	
	



	 62	

	
Test	#	 05	
Test	
Description	

User	should	be	able	to	save	the	current	file	and	
continues	his	or	her	work	when	clicking	“Save”	
button	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“File”	button	on	Menu	
4. Press	the	“Save”	button	

Expected	
Result	

1. The	software	should	pop	up	a	JDialog	to	allow	
user	save	his	or	her	file	to	a	certain	path.	(If	the	
file	has	already	been	saved	before,	the	JDialog	
will	not	show	up	and	the	file	will	automatically	
be	saved	to	the	previous	path)	

2. The	JDialog	will	be	automatically	closed	and	
user	could	continue	his	or	her	work	

Actual	
Result	

1. The	software	should	pop	up	a	JDialog	to	allow	
user	save	his	or	her	file	to	a	certain	path.	(If	the	
file	has	already	been	saved	before,	the	JDialog	
will	not	show	up	and	the	file	will	automatically	
be	saved	to	the	previous	path)	

2. The	JDialog	will	be	automatically	closed	and	
user	could	continue	his	or	her	work	

	
	
	
	
Test	#	 06	
Test	
Description	

User	should	be	able	to	change	his	game	project	GUI	
setting	by	click	the	“GUI	Setting	button”	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	



	 63	

3. Press	the	“File”	button	on	Menu	
4. Press	the	“GUI	Setting”	button	

Expected	
Result	

The	software	should	pop	up	a	JDialog	to	allow	user	to	
make	any	necessary	changes	to	the	current	game	
project	GUI	Setting.	User	confirm	his	changes	by	click	
the	confirm	button.	

Actual	
Result	

The	software	should	pop	up	a	JDialog	to	allow	user	to	
make	any	necessary	changes	to	the	current	game	
project	GUI	Setting.	User	confirm	his	changes	by	click	
the	confirm	button.	

	
	
	
	
Test	#	 07	
Test	
Description	

User	should	be	able	to	upload	the	current	game	
project	to	the	remote	serve		

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“File”	button	on	Menu	
4. Press	the	“Upload”	button	

Expected	
Result	

The	software	should	pop	up	a	JDialog	to	indicate	
whether	user	successfully	upload	his	game	project.	It	
would	tell	user	“Not	successful	because	of	connecting	
error”	if	disconnect	with	the	server.	Otherwise,	
“Successfully	uploading”.	

Actual	
Result	

The	software	should	pop	up	a	JDialog	to	indicate	
whether	user	successfully	upload	his	game	project.	It	
would	tell	user	“Not	successful	because	of	connecting	
error”	if	disconnect	with	the	server.	Otherwise,	
“Successfully	uploading”.	

	



	 64	

	
Test	#	 08	
Test	
Description	

User	should	be	able	to	add	the	image	to	the	resource	
package	and	panel	when	clicking	“Import	Image…”	
button	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“Asset”	button	on	Menu	
4. Press	the	“Import	Image…”	button	

Expected	
Result	

1. The	software	should	pop	up	a	FileChooser	to	
allow	user	select	the	image	he	or	she	wants	to	
import	

2. The	name	of	the	image	will	automatically	show	
up	in	the	Resource	JPanel,	and	the	image	file	
should	be	added	into	certain	package	

Actual	
Result	

1. The	software	should	pop	up	a	FileChooser	to	
allow	user	select	the	image	he	or	she	wants	to	
import	

2. The	name	of	the	image	will	automatically	show	
up	in	the	Resource	JPanel,	and	the	image	file	
should	be	added	into	certain	package	

	
	
	
	
Test	#	 09	
Test	
Description	

User	should	be	able	to	look	up	the	tutorial	of	the	
software	any	time	he	or	she	wants	when	clicking	
“Tutorial”	button		

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“Help”	button	on	Menu	



	 65	

4. Press	the	“Tutorial”	button	
Expected	
Result	

1. The	software	should	pop	up	a	JFrame	which	
contain	the	basic	information	and	instruction	
about	software	

2. User	is		allowed	to	do	any	operations	while	
looking	up	the	tutorial	

Actual	
Result	

1. The	software	should	pop	up	a	JFrame	which	
contain	the	basic	information	and	instruction	
about	software	

2. User	is		allowed	to	do	any	operations	while	
looking	up	the	tutorial	

	
	
	
	
Test	#	 10	
Test	
Description	

User	should	be	able	to	run	he	or	her	current	project	
when	clicking	“Play”	button	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“Play”	button	at	the	left	corner	

Expected	
Result	

1. The	software	should	automatically	generate	
a	game	project	which	contain	all	the	process	
user	does	

2. User	is	able	to	test	and	go	through	his	or	her	
game	through	the	project	software	
generates	

3. User	is	able	to	run	several	game	at	the	same	
time	by	repeatedly	clicking	“Play”	button	

Actual	
Result	

1. The	software	should	automatically	generate	
a	game	project	which	contain	all	the	process	
user	does	



	 66	

2. User	is	able	to	test	and	go	through	his	or	her	
game	through	the	project	software	
generates	

3. User	is	able	to	run	several	game	at	the	same	
time	by	repeatedly	clicking	“Play”	button	

	
	
	
	
Test	#	 11	
Test	
Description	

User	should	be	able	to	stop	the	current	running	
project	when	clicking	“Stop”	button	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“Stop”	button	at	the	left	corner	

Expected	
Result	

1. The	current	running	game	will	be	terminated	
and	the	window	will	be	closed	automatically	

2. Other	games	that	user	previously	ran	will	not	be	
influenced	

Actual	
Result	

1. The	current	running	game	will	be	terminated	
and	the	window	will	be	closed	automatically	

2. Other	games	that	user	previously	ran	will	not	be	
influenced	

	
	
	
	
Test	#	 12	
Test	
Description	

User	should	be	able	to	show	or	hide	the	“Scene”	
catalogues	by	double	clicking	the	“Hierarchy”	root	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	



	 67	

3. Double	click	the	“Hierarchy”	root	at	the	left	
corner	

Expected	
Result	

1. If	the	“Scene”	catalogues	are	hidden,	the	
Hierarchy	tree	will	expand	

2. If	the	“Scene”	catalogues	are	shown,	the	
Hierarchy	tree	will	pack	up	

Actual	
Result	

1. If	the	“Scene”	catalogues	are	hidden,	the	
Hierarchy	tree	will	expand	

2. If	the	“Scene”	catalogues	are	shown,	the	
Hierarchy	tree	will	pack	up	

	
	
	
	
Test	#	 13	
Test	
Description	

User	should	be	able	to	create	a	new	Scene	by	right	
clicking	the	“Hierarchy”	root	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Right	click	the	“Hierarchy”	root	at	the	left	

corner	
4. Click	“Create	New	Scene”	option	in	the	pop	up	

dialog	
Expected	
Result	

1. When	right	clicking	the	“Hierarchy”	root,	a	pop	
up	JDialog	will	show	up	and	contain	“Create	
New	Scene”	option	

2. When	user	click	the	“Create	New	Scene”,	a	new	
Scene	will	be	created	in	the	backstage	(the	
Scene	will	contain	a	state	in	default)	

3. Also	a	new	Scene	node	will	be	created	in	the	
Hierarchy	tree	



	 68	

4. The	“Preview”	and	“Edit”	panel	will	
automatically	show	the	content	in	the	new	
Scene	

Actual	
Result	

1. When	right	clicking	the	“Hierarchy”	root,	a	pop	
up	JDialog	will	show	up	and	contain	“Create	
New	Scene”	option	

2. When	user	click	the	“Create	New	Scene”,	a	new	
Scene	will	be	created	in	the	backstage	(the	
Scene	will	contain	a	state	in	default)	

3. Also	a	new	Scene	node	will	be	created	in	the	
Hierarchy	tree	

4. The	“Preview”	and	“Edit”	panel	will	
automatically	show	the	content	in	the	new	
Scene	

	
	
	
	
Test	#	 14	
Test	
Description	

User	should	be	able	to	show	or	hide	the	“State”	
catalogues	by	double	clicking	the	“Scene”	node	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Double	click	the	“Hierarchy”	root	at	the	left	

corner	to	see	the	“Scene”	node	
4. Double	click	the	“Scene”	node	

Expected	
Result	

1. If	the	“State”	catalogues	are	hidden,	the	Scene	
tree	will	expand	

2. If	the	“State”	catalogues	are	shown,	the	Scene	
tree	will	pack	up	

Actual	
Result	

1. If	the	“State”	catalogues	are	hidden,	the	Scene	
tree	will	expand	



	 69	

2. If	the	“State”	catalogues	are	shown,	the	Scene	
tree	will	pack	up	

	
	
	
	
Test	#	 15	
Test	
Description	

User	should	be	able	to	create	a	new	State	by	right	
clicking	the	“Scene”	node	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Double	click	the	“Hierarchy”	root	at	the	left	

corner	to	see	the	"Scene”	node	
4. Right	click	the	“Scene”	node	
5. Click	“Create	New	State”	option	in	the	pop	up	

dialog	
Expected	
Result	

1. When	right	clicking	one	of	the	“Scene”	nodes,	a	
pop	up	JDialog	will	show	up	and	contain	“Create	
New	State”	option	

2. When	user	click	the	“Create	New	State”,	a	new	
Scene	will	be	created	in	the	backstage	

3. Also	a	new	Scene	node	will	be	created	in	the	
Hierarchy	tree	

4. The	“Preview”	and	“Edit”	panel	will	
automatically	show	the	content	in	the	new	
Scene	

Actual	
Result	

1. When	right	clicking	one	of	the	“Scene”	nodes,	a	
pop	up	JDialog	will	show	up	and	contain	“Create	
New	State”	option	

2. When	user	click	the	“Create	New	State”,	a	new	
Scene	will	be	created	in	the	backstage	



	 70	

3. Also	a	new	Scene	node	will	be	created	in	the	
Hierarchy	tree	

4. The	“Preview”	and	“Edit”	panel	will	
automatically	show	the	content	in	the	new	
Scene	

	
	
	
	
Test	#	 16	
Test	
Description	

User	should	be	able	to	delete	a	existing	Scene	by	
right	clicking	the	“Scene”	node	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Double	click	the	“Hierarchy”	root	at	the	left	

corner	to	see	the	"	
4. Click	“Delete	Scene”	option	in	the	pop	up	dialog	

Expected	
Result	

1. When	right	clicking	one	of	the	“Scene”	nodes,	a	
pop	up	JDialog	will	show	up	and	contain	“Delete	
Scene”	option	

2. When	user	click	the	“Delete	Scene”,	certain	
Scene	will	be	deleted	in	the	backstage	

3. Also	certain	Scene	node	will	be	deleted	in	the	
Hierarchy	tree	

Actual	
Result	

1. When	right	clicking	one	of	the	“Scene”	nodes,	a	
pop	up	JDialog	will	show	up	and	contain	“Delete	
Scene”	option	

2. When	user	click	the	“Delete	Scene”,	certain	
Scene	will	be	deleted	in	the	backstage	

3. Also	certain	Scene	node	will	be	deleted	in	the	
Hierarchy	tree	

	



	 71	

Test	#	 17	
Test	
Description	

User	should	be	able	to	delete	an	existing	State	by	
right	clicking	the	“State”	node	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Double	click	the	“Hierarchy”	root	at	the	left	

corner	to	see	the	"Scene”	node	
4. Double	click	the	“Scene”	node	to	see	the	

“State”	node	
5. Right	click	the	“State”	node	
6. Click	“Delete	Scene”	option	in	the	pop	up	dialog	

Expected	
Result	

1. When	right	clicking	one	of	the	“State”	nodes,	a	
pop	up	JDialog	will	show	up,	which	contains	
“Delete	State”	option	

2. When	user	click	the	“Delete	State”	option,	
certain	Sate	will	be	deleted	in	the	backstage	

3. Also	certain	State	node	will	be	deleted	in	the	
Scene	tree	

Actual	
Result	

1. When	right	clicking	one	of	the	“State”	nodes,	a	
pop	up	JDialog	will	show	up,	which	contains	
“Delete	State”	option	

2. When	user	click	the	“Delete	State”	option,	
certain	Sate	will	be	deleted	in	the	backstage	

3. Also	certain	State	node	will	be	deleted	in	the	
Scene	tree	

	
	
	
	
Test	#	 18	
Test	
Description	

User	should	be	able	to	see	the	current	outline	of	his	
or	her	work	in	the	Outline	panel		



	 72	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Check	the	“Outline”	panel	at	the	right	side	

Expected	
Result	

1. The	outline	panel	should	contain	all	the	Scenes,	
States	and	connections	that	user	currently	
creates	

2. Outline	should	be	updated	whenever	the	user	
click	the	confirm	button	in	the	“Edit”	panel	

Actual	
Result	

1. The	outline	panel	should	contain	all	the	Scenes,	
States	and	connections	that	user	currently	
creates	

2. Outline	should	be	updated	whenever	the	user	
click	the	confirm	button	in	the	“Edit”	panel	

	
	
	
	
Test	#	 19	
Test	
Description	

User	can	see	the	preview	of	the	current	scene	at	the	
current	state	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Select	any	Scene		
4. Setelt	any	State	
5. Click	the	preview	button	located	in	the	center	of	

the	window	
Expected	
Result	

The	preview	of	the	current	scene	at	the	current	state	
should	be	displayed	accordingly	to	GameGUI	setting	

Actual	
Result	

The	preview	of	the	current	scene	at	the	current	state	
should	be	displayed	accordingly	to	GameGUI	setting	

	
	



	 73	

Test	#	 20	
Test	
Description	

Preview	should	reflect	to	any	GUI	Setting	changes	
immediately	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Press	the	“File”	button	on	Menu	
4. Press	the	“GUI	Setting”	button	
5. Make	changes	of	all	properties		
6. Click	confirm	button	
7. Click	preview	

Expected	
Result	

All	changes	should	be	reflected	in	preview	accordingly	
to	our	changes	

Actual	
Result	

All	changes	should	be	reflected	in	preview	accordingly	
to	our	changes	

	
	
	
	
Test	#	 20	
Test	
Description	

When	click	edit	button,	user	can	see	a	editing	area	

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Select	any	Scene		
4. Setelt	any	State	
5. Click	edit	button	

Expected	
Result	

There	should	be	an	editing	area	which	has	several	
input	text	fields	and	combo	box	for	users	to	do	any	
necessary	modifications.			

Actual	
Result	

There	should	be	an	editing	area	which	has	several	
input	text	fields	and	combo	box	for	users	to	do	any	
necessary	modifications.			



	 74	

	
Test	#	 21	
Test	
Description	

User	can	make	any	change	of	all	properties	of	the	
current	scene	at	the	current	state		

Step	to	run	
test	

1. Run	the	StoryCreator	Client	
2. Proceed	to	MainWindow	
3. Select	any	scene	
4. Select	any	state	
5. Make	arbitrary	changes	in	the	editing	area	
6. Click	preview	

Expected	
Result	

All	changes	should	be	reflected	in	the	preview	area	

Actual	
Result	

All	changes	should	be	reflected	in	the	preview	area	

	
	
	
	
	
Server	
	
Test#	 01	
Test	
Description:	

The	server	should	start	listening	for	connection	
after	valid	port	number	is	entered		

Steps	to	run	
test:	

1.)	Open	up	the	port	GUI	
2.)	Enter	valid	port	number	
3.)Click	the	button	“start	listening”	

Expected	
result:	

If	the	port	number	is	valid,	the	Server	GUI	will	pop	
up	and	can	now	allow	connection	with	clients.	
Otherwise,	there	will	be	a	message	saying	the	port	
number	is	invalid.		

	



	 75	

	
Test#	 02	
Test	
Description:	

Server	will	cut	all	connections	with	clients	when	it	
is	terminated		

Steps	to	run	
test:	

1.)	Start	the	port	GUI		
2.)	Enter	valid	port	number	
3.)	Start	listening	
4.)	Log	in	on	the	main	window	GUI	successfully	
2.)	Click	the	button	“terminate”	on	the	server	GUI	

Expected	
result:	

The	connections	between	server	and	client	are	cut.	
The	client	cannot	do	any	activities	that	require	
server	connection	such	as	log	in	from	another	main	
window,	sign	up,	or	save	their	projects.				

	
	
	
Test#	 03	
Test	
Description:	

Server	allows	multiple	client	connections		

Steps	to	run	
test:	

1.)	Start	the	port	GUI		
2.)	Enter	valid	port	number	
3.)	Start	listening	
4.)	Log	in	on	the	main	window	GUI	successfully	
5.)	Repeat	step	4	from	another	main	window	GUI	
with	another	username	

Expected	
result:	

Two	Log	ins	must	be	successful.		

	
	
	
	
Test#	 04	



	 76	

Test	
Description:	

Server	does	not	allow	connection	with	multiple	
clients	who	try	to	log	in	with	same	username		

Steps	to	run	
test:	

1.)	Start	the	port	GUI		
2.)	Enter	valid	port	number	
3.)	Start	listening	
4.)	Log	in	on	the	main	window	GUI	successfully	
5.)	Repeat	step	4	from	another	main	window	GUI	
with	the	same	username	

Expected	
result:	

The	second	log	in	attempt	should	fail.	There	will	be	
message	noting	that	this	username	has	already	
logged	in.			

	
	
	
	
Test#	 05	
Test	
Description:	

Server	can	service	the	requests	from	multiple	client	
connections		

Steps	to	run	
test:	

1.)	Start	the	port	GUI		
2.)	Enter	valid	port	number	
3.)	Start	listening	
4.)	Log	in	on	the	main	window	GUI	successfully	
5.)	Repeat	step	4	from	another	main	window	GUI	
with	another	username	
6.)	Perform	some	actions	on	the	first	main	window	
such	as	creating	new	project	and	save	it	
7.)		Repeat	step	6	on	the	second	main	window	
8.)	Log	out	and	Log	in	again	from	the	first	main	
window	
9.)	Repeat	step	8	on	the	second	main	window	

Expected	
result:	

After	re-logging	in	on	both	windows,	the	new	game	
project	created	on	each	account	before	logging	out	



	 77	

must	be	saved	and	accessible.	This	would	mean	
that	server	successfully	service	requests	from	
multiple	clients.		

	
	
	
Database	
	
Test#	 01	
Test	
Description:	

User	should	be	able	to	save	game	projects.	This	
also	tests	for	retrieving	user	object	from	database.	

Steps	to	run	
test:	

1.) Launch	the	StoryCreator	client	
2.) Create	a	game	project	and	make	changes	to	

the	project	
3.) Save	remotely	
4.) Close	the	program	
5.) Launch	the	program	again	
6.) Open	existing	project	and	try	to	look	for	the	

one	you	just	saved	
Expected	
result:	

Saving	function	and	user	object	retrieving	function	
work,	users	are	able	to	open	an	existing	project,	
which	is	the	one	the	user	has	saved	before	closing	
the	program.	Users	are	also	able	to	see	other	
existing	projects	made	previously.		

	
	
	
	

	
	
	



	 78	

Deployment	
	

To	deploy	this	application	within	Eclipse,	import	the	StoryCreator.zip	
file	into	Eclipse.		
Open	Eclipse,	click	“File”	menu	bar,	click	“Import…”	
	

	
	
Then	click	“Existing	Projects	into	Workspace”,	click	next	to	continue	
	



	 79	

	
	
After	that,	click	“Browse…”	to	import	project	from	File	Chooser,	then	
click	“Finish”.	
	



	 80	

	
	
This	should	generate	a	project	called	StoryCreator	with	src	and	
resources	directories.	To	execute	the	StoryCreator	project,	run	
StoryCreatorClientWindow.java	in	the	tip.storycreator.client	package.	
No	need	to	run	the	server	in	the	local	computer.	The	server	has	already	
been	set	up	on	cloud.	
	
	
Before	user	signs	up	or	login,	he	or	she	should	click	the	“Setting”	à	
“Confirm”	to	connect	to	the	port.	After	this,	user	should	be	able	to	sign	
up	and	login.		
	
When	users	finishing	creating	their	own	project,	they	should	be	able	to	
run	their	projects	directly	through	our	software	by	clicking	the	“Play”	



	 81	

button	in	the	MainWindow.	After	clicking	the	“Play”	button,	the	game	
GUI	will	show	up,	and	users	could	play	their	game	in	the	way	they	
create.	
	
To	read	from	or	save	to	the	remote(Server)/local	side,	use	the	“Open”	
and	“Save”	button	created	in	the	MainWindow.	After	clicking	one	of	
the	two	buttons,	a	file	chooser	will	pop	up	which	contain	the	choices	of	
open	from/save	to	the	local/remote.	Users	could	choose	to	save	or	
open	their	file	in	different	ways	base	on	their	choices.	Also	when	users	
are	in	the	CreateFile	Window,	they	could	also	choose	to	open	existing	
file	from	local/remote	side.		


